skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mychajliw, Alexis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record—a long-term archive of human–animal–environmental interactions—has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and ‘disease-scapes’ from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the ‘-omics’ can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence. 
    more » « less
  2. Large carnivores (order Carnivora) are among the world's most threatened mammals due to a confluence of ecological and social forces that have unfolded over centuries. Combining specimens from natural history collections with documents from archival records, we reconstructed the factors surrounding the extinction of the California grizzly bear (Ursus arctos californicus), a once-abundant brown bear subspecies last seen in 1924. Historical documents portrayed California grizzlies as massive hypercarnivores that endangered public safety. Yet, morphological measurements on skulls and teeth generate smaller body size estimates in alignment with extant North American grizzly populations (approx. 200 kg). Stable isotope analysis (δ13C,δ15N) of pelts and bones (n= 57) revealed that grizzlies derived less than 10% of their nutrition from terrestrial animal sources and were therefore largely herbivorous for millennia prior to the first European arrival in this region in 1542. Later colonial land uses, beginning in 1769 with the Mission era, led grizzlies to moderately increase animal protein consumption (up to 26% of diet), but grizzlies still consumed far less livestock than otherwise claimed by contemporary accounts. We show how human activities can provoke short-term behavioural shifts, such as heightened levels of carnivory, that in turn can lead to exaggerated predation narratives and incentivize persecution, triggering rapid loss of an otherwise widespread and ecologically flexible animal. 
    more » « less
  3. Shifting baselines can skew species harvest guidelines and lead to potentially inaccurate assessments of population status and range. The North American Fur Trade (~1600–1900 CE) profoundly impacted the continent’s socio-ecological systems, but its legacies are often not incorporated in management discussions. We apply a conservation paleobiology lens to address shifting baselines of nine species of fur-bearing mammals in Vermont, including seven mesocarnivores and two semi-aquatic rodents. Using a database maintained by the Vermont Division for Historic Preservation, we identified 25 existing radiocarbon dates of fur-bearer associated features from 16 archaeological localities spanning the Early-Late Holocene. We also generated 7 new radiocarbon dates on beaver and muskrat bones from the Ewing (VT-CH-005), Bohannon (VT-GI-026), and Chimney Point (VT-AD-329) localities. Our new radiocarbon dates cluster within the Late Holocene, immediately prior to and throughout the European contact period, and overlap with The Beaver Wars. We recover a ~8,000 year record of beaver harvest, affirming the millennial scale importance of beavers, a species that is often the focus of human-wildlife conflict research. Comparison of zooarchaeological occurrences with digitized natural history specimens and community science observations reveals geographic range continuity for most species except for the American marten, which was historically extirpated, and confirms the native status of the red fox. While taphonomic constraints make our dataset a conservative assessment, our case studies demonstrate how wildlife managers can employ zooarchaeological data to better understand long-term properties of coupled socio-ecological systems and highlight the cultural importance of these species to Indigenous trade networks prior to the Fur Trade in Vermont. 
    more » « less
  4. Sills, Jennifer (Ed.)
  5. ABSTRACT MotivationSNAPSHOT USA is an annual, multicontributor camera trap survey of mammals across the United States. The growing SNAPSHOT USA dataset is intended for tracking the spatial and temporal responses of mammal populations to changes in land use, land cover and climate. These data will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, as well as the impacts of species interactions on daily activity patterns. Main Types of Variables ContainedSNAPSHOT USA 2019–2023 contains 987,979 records of camera trap image sequence data and 9694 records of camera trap deployment metadata. Spatial Location and GrainData were collected across the United States of America in all 50 states, 12 ecoregions and many ecosystems. Time Period and GrainData were collected between 1st August and 29th December each year from 2019 to 2023. Major Taxa and Level of MeasurementThe dataset includes a wide range of taxa but is primarily focused on medium to large mammals. Software FormatSNAPSHOT USA 2019–2023 comprises two .csv files. The original data can be found within the SNAPSHOT USA Initiative in the Wildlife Insights platform. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon ( Solenodon paradoxus ). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 ( KLK1 ) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1 s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions. 
    more » « less